

"Horacy" Artur Jureczko

Regon: 276731920

NIP: 631-215-95-64

44-122 Gliwice, ul. Kochanowskiego 25a/27 Internet: www.yuko.com.pl e-mail: yuko@yuko.com.pl

tel: 783314473 fax: 327390403

# Transporter sygnałów dwustanowych przez sieć IP typ ETT-01



# 1. Opis ogólny

Transportery typu ETT są urządzeniami umożliwiającym przenoszenie poprzez sieć Internet stanów wolnozmiennych sygnałów dwustanowych (np stanu przełączników lub czujników). Para takich urządzeń zainstalowanych w dwóch dowolnych miejscach sieci pozwala na odwzorowanie stanu wejść jednego urządzenia na wyjściach drugiego. Odwzorowanie to jest dwukierunkowe i odbywa się z szybkością wynikającą z wybranego okresu próbkowania stanów wejść oraz czasu przejścia informacji poprzez sieć. Każdy transporter przenosi 2 sygnały wejściowe, oraz 2 wyjściowe. Transportery ETT przewidziane są do bezpośredniego dołączenia do sieci poprzez odpowiedni interfejs Ethernet, i w czasie normalnej pracy nie wymagają współpracy z żadnymi innymi urządzeniami, poza standardowym wyposażeniem sieciowym.

Transporter ETT-01 powstał na bazie <u>konwertera ETS-02</u> i sprzętowo jest z nim identyczny. Zmieniono tylko wewnętrzne oprogramowanie w urządzeniu.

W transporterach ETT dostępne są następujące interfejsy:

- Ethernet 10/100Base-T służący do dołączenia do sieci,
- interfejs szeregowy RS232 do konfiguracji i testowania urządzenia
- zestaw wejść i wyjść dwustanowych, których stany przenoszone są poprzez sieć.

Dwa ostatnie interfejsy wyprowadzone są na to samo złącze DB9 (nawet na te same styki złącza). O tym jaki interfejs jest aktualnie wykorzystywany decyduje stan w jakim się znajduje transporter. W stania konfiguracji złącze DB9 jest typowym interfejsem RS232, a w stania pracy, jest wejściem i wyjściem przenoszonych sygnałów dwustanowych.

Transporter ETT po skonfigurowaniu i dołączeniu do sieci przesyła informacje o aktualnym stanie wejść do drugiego takiego samego transportera dołączonego w dowolnym miejscu sieci, co powoduje ustawienie na odpowiednich wyjściach tego drugiego urządzenia odpowiednich stanów. Informacja o stanie wejść odległego transportera steruje w ten sam sposób stanem wyjść lokalnego transportera. Urządzenia pracują parami i identyfikują się wzajemnie na podstawie przydzielonych w czasie konfiguracji adresów IP.



Informacja o stanie styku przesyłana jest poprzez sieć do odległej lokalizacji



Monitoring i sterowanie zdalnym urządzeniem kontrolno-pomiarowym Rys. 1 Przykłady wykorzystania transporterów ETT



Istnieje możliwość użycia jednego transportera komunikującego się z innym urządzeniem, np komputerem z zainstalowanym odpowiednim oprogramowaniem.

Urządzenie skonstruowane jest w postaci niewielkiego pudełka zawierającego złącze RJ45 interfejsu Ethernet, złącze DB9M interfejsu RS232 i wejść/wyjść cyfrowych oraz wskaźniki stanu i trybu pracy. Całość zasilana jest z zewnętrznego zasilacza.

Transportery ETT mogą być wykorzystane wszędzie tam, gdzie istnieje konieczność przeniesienia niewielkim kosztem na dużą odległość sygnałów binarnych, a jest możliwość wykorzystania do tego sieci Internet lub intranet

## 2. Podstawowe parametry techniczne

## 2.1. Interfejs sieciowy

| Тур:               | - | 10Base-T/100Base-TX DTE z au- |  |  |
|--------------------|---|-------------------------------|--|--|
|                    |   | todetekcją trybu pracy        |  |  |
| Używane protokoły: | - | IP, UDP, ICMP, ARP            |  |  |
| Wskaźniki:         | - | Link, Speed/Data              |  |  |

## 2.2. Interfejs szeregowy

| Тур:                      | - | RS232 DTE                   |  |
|---------------------------|---|-----------------------------|--|
| Złącze:                   | - | DB9M                        |  |
| Parametry transmisji:     | - | asynchroniczna, Full Duplex |  |
| Szybkość/typ transmisji:- |   | 9600 8N1, bez kontroli      |  |
| Dostępne sygnały:         | - | RXD, TXD, RTS, CTS i DTR    |  |

## 2.3. Wejścia/wyjścia binarne

W podstawowej wersji urządzenia ETT-01 dostępne są 2 sygnały wejściowe i 2 wyjściowe w standardzie napięciowym zgodnym z poziomami wysyłanymi i akceptowanymi przez typowe nadajniki i odbiorniki interfejsu RS232. Sygnały te dostępne są na złączu DB9M. Są to te same sygnały, które w trybie konfiguracji urządzenia służą do komunikacji z konsolą sterującą, czyli RXD i TXD oraz dodatkowo RTS

## i CTS.

Parametry elektryczne sygnałów wejściowych i wyjściowych wynikają z właściwości zastosowanych układów nadajników/odbiorników i przedstawione są w tabelce:

| Stan logiczny | Sygnały<br>wejściowe,<br>styki: 2 i 8<br>(p. uwaga 1) | Sygnały<br>wyjściowe,<br>styki: 3 i 7<br>(p. uwaga 2) |
|---------------|-------------------------------------------------------|-------------------------------------------------------|
| OFF           | Uwe<= 0.8V                                            | Uwy <= -5.4V                                          |
| ON            | Uwe >=2.4V                                            | Uwy >= +5.4V                                          |

Uwagi: (1) Stan wejścia niepodłączonego jest

równoznaczny z "OFF" (2) Przy |lwy| <= 1.6 mA

Istnieje możliwość ustawienia, za pomocą zworek, innych parametrów elektrycznych sygnałów:

OUT1 : ±3V/50mA,

IN1 : czułość ±200mV

## 2.4. Zasilanie

Napięcie zasilające: - 5V.24V prądu stałego Pobór mocy: - max 1W w wersji podstawowej.

## 3. Opis działania

Urządzenie ETT w wersji podstawowej ma interfejs Ethernet 10/100 Mbps, Half/Full Duplex w postaci złącza RJ45 oraz złącze DB9M, na które wyprowadzone są sygnały interfejsu RS232: RXD, TXD, RTS, CTS i DTR. W trybie konfiguracji urządzenia sygnały te są używane do komunikacji z konsolą sterującą, natomiast w trybie normalnej pracy sygnały te mogą być wykorzystane do przesyłania informacji o stanie wejść do odległego urządzenia. Interfejs RS232 skonfigurowany jest jako DTE, co oznacza konwencję sygnałów przedstawioną w tabeli 1.

| nr styku | <b>stan konfiguracji</b><br>(RS 232) | typ | <b>stan pracy</b><br>(wej/wyj sygnałów<br>dwustanowych) |
|----------|--------------------------------------|-----|---------------------------------------------------------|
| 1        |                                      |     |                                                         |
| 2        | RxD                                  | IN  | IN1                                                     |
| 3        | TXD                                  | OUT | OUT1                                                    |
| 4        | DTR                                  | OUT | +5V                                                     |
| 5        | GND                                  | -   | GND                                                     |
| 6        |                                      |     |                                                         |
| 7        | RTS                                  | OUT | OUT2                                                    |
| 8        | CTS                                  | IN  | IN2                                                     |
| 9        |                                      |     |                                                         |

Tab. 1. Opis złącza DB9 transportera

#### YUKO Ethernet 【----→ OUT1 IN1 RXD TXD 3 2 OUT1 IN1 3 TXD **RXD** 2 IN<sub>2</sub> OUT2 8 RTS 7 CTS IN<sub>2</sub> OUT2 7 CTS 8 RTS +5V +5V 4 4 DTR DTR GND GND 5 GND GND 5 ETT "A" ETT "B"

Rys. 2 Przepływ sygnałów w podstawowej wersji transporterów ETT

Sygnały: RXD/TXD i CTS/RTS stanowią odpowiednie pary w dwóch skojarzonych z sobą urządzeń ETT tzn. stan aktualny wejść: RXD i CTS jednego z tych urządzeń przenoszony jest odpowiednio na sygnały wyjściowe: TXD i RTS drugiego urządzenia. Sygnał wyjściowy DTR jest stale ustawiony na obu urządzeniach do stanu aktywnego (Uwy >= 5V), co można wykorzystać do sterowania stanem wejść.

Powyższe zależności zobrazowane są na rys.2.

Uwzględniając powyżej przedstawione zależności oraz fakt, że na styku 4 złącza DB9M występuje stałe napięcie dodatnie można skonstruować układ testowy zestawu ETT jak na rys.3. Zwarcie dowolnego przełącznika SW-xx spowoduje po czasie wynikającym z parametrów konfiguracyjnych oraz właściwości sieci zaświecenie w drugim urządzeniu diody LED powiązanej z tym przełącznikiem.

Dwa urządzenia ETT mogą być połączone bezpośrednio, z pominięciem infrastruktury sieciowej za pomocą "skrzyżo-

wanego" kabla sieciowego.

Wskaźnik "POWER" sygnalizuje obecność zasilania.

## 3.1. Przepływ danych w zestawie ETT

Standardowy zestaw ETT składa się z dwóch transporterów dołączonych do sieci. W czasie konfiguracji określone są ich podstawowe parametry sieciowe: adres IP (Local IP), maska podsieci, brama i używany port. W celu jednoznacznego powiązania dwóch transporterów przyłączonych do sieci dodatkowo określany jest w każdym z tych urządzeń adres IP transportera powiązanego (Peer IP). Nie ma możliwości automatycznego (poprzez mechanizm DHCP) przydzielenia adresów sieciowych.

Jeden z transporterów określany jest w czasie konfiguracji jako nadrzędny (Master), drugi jest podporządkowanym (Slave).To przyporządkowanie jest dowolne.



Rys. 3 Układ testowy zestawu ETT w wersji podstawowej.



Transporter nadrzędny (Master) wysyła z określoną w czasie konfiguracji częstotliwością pakiety UDP skierowane do transportera podporządkowanego (Slave), w których to pakietach przesyłana jest m.in. Informacja o stanie jego wejść. Transporter podporządkowany odpowiada podobnymi pakietami. W każdym z transporterów stan wejść odległego urządzenia przenoszony jest na lokalne wyjścia. Żaden z transporterów nie reaguje na pakiety wysłane do niego z urządzenia o adresie IP innym niż określony w czasie konfiguracji adres transportera powiązanego (Peer IP).

Protokół komunikacyjny oraz struktura przesyłanych pomiędzy urządzeniami pakietów UDP producent udostępnia na specjalne żądanie użytkownika.

## 4. Instalacja

## 4.1 Ustawienie zworek

Dla standardowych parametrów elektrycznych sygnałów OUT1 i IN1 zworki należy ustawić jak na rys.4.



Rys.4 Standardowe ustawienie zworek.

## 4.2 Zasilanie

Zewnętrznego źródło napięcia stałego 5..24V np. zasilacz sieciowy, lub napięcie z gniazda USB należy dołączyć do złącza oznaczonego "5..24V" wtykiem 5,5x2,5 mm (+ w środku).

## 4.3 Interfejs Ethernet

Sygnały standardowego interfejsu Ethernet 10Base-T/100Base-TX wyprowadzone są na złącze RJ-45 w układzie DTE. Oznacza to, że aby uzyskać poprawne połączenie należy użyć kabla "prostego" do połączenia z urządzeniem sieciowym DCE (switch, hub, router) oraz kabla "z przeplotem" do połączenia z końcowym urządzeniem DTE np. z komputerem. Kabel "z przeplotem" trzeba też zastosować w przypadku bezpośredniego połączenia dwóch transporter ów ETT bez pośrednictwa urządzeń sieciowych.

Tryb pracy interfejsu: szybkość 10/100 Mbps, Half/Full Duplex określane są poprzez standardowe procedury autonegocjacji/autodetekcji i nie może być ustawione w transporterze ETT na stałe. Powoduje to, że w przypadku połączenia konwertera do urządzenia z interfejsem pracującym w takim samym trybie zostanie wynegocjowana najwyższa możliwa szybkość transmisji (najczęściej 100 Mbps) i Full Duplex. W przypadku połączenia z urządzeniem pracującym w ustalonym trybie (tzn. z wyłączoną autonegocjacją lub np. ze starszymi urządzeniami pracującymi jedynie w 10Mbps Half Duplex ) taki sam tryb pracy zostanie ustawiony w interfejsie transporterze ETT.

W złączu RJ45 zamontowane są dwa wskaźniki LED: zielony zapalony wskazuje poprawność połączenia w interfejsie Ethernet, żółty zapalony szybkość 100 Mbps, zgaszony 10 Mbps. Przy pracy z szybkością 100 Mbps, migotanie zielonego wskaźnika następuje w czasie nadawania i odbioru ramek Ethernet.

# 5. Konfiguracja i testowanie urządzeń

W czasie konfiguracji zestawu transporterów ETT określane są podstawowe parametry sieciowe oraz pewne dodatkowe właściwości tych urządzeń.

Konfiguracja odbywa się poprzez interfejs RS232 z dowolnego emulatora terminala (np. Hyperterminal, Minicom itp.) dołączonego do urządzenia ETT standardowym kablem DB9M/DB9F. Parametry transmisji: 9600 8N1, bez kontroli przepływu. W przeciwieństwie do konwertera ETS-02, transportera ETT nie można programować poprzez Ethernet.

Aby uaktywnić tryb konfiguracji należy w ciągu ok. 3 sekund po załączeniu zasilania przesłać do urządzenia znak spacji (kod 20h). Przesłanie w tym czasie innego znaku lub brak jakiegokolwiek znaku w podanym czasie spowoduje przejście urządzenia do trybu normalnej pracy.

Uaktywnienie trybu konfiguracji urządzenia spowoduje wyprowadzenie na ekran tekstu zbliżonego do przedstawionego poniżej.

YUKO ETT 01 Config Information

Configuration Menu:

| (H)ardware MAC address             | - HexaDeciaml     |  |  |  |
|------------------------------------|-------------------|--|--|--|
| (L)ocal IP addresse                | - Decimal         |  |  |  |
| (S)ubnet mask                      | - Decimal         |  |  |  |
| (G)ateway IP address               | - Deciaml         |  |  |  |
| Por(T) number                      | - Decimal         |  |  |  |
| (P)eer IP address                  | - Decimal         |  |  |  |
| (M)ode select                      | - ,M', ,S' or ,T' |  |  |  |
| (R)epeat period time in ms         | - Decimal         |  |  |  |
| De(B)ug level select               | -,0',,1' or $,2'$ |  |  |  |
| (D) isplay network configuration   |                   |  |  |  |
| (E) xit network configuration mode |                   |  |  |  |



W pierwszej części wyświetlone są aktualne parametry konfiguracyjne, w drugiej dostępne menu. Naciśnięcie klawisza odpowiadającego znakowi podanemu w nawiasach "( )" spowoduje wyprowadzenie odpowiedniego tekstu z zaproszeniem do określenie parametru konfiguracyjnego. Np. po naciśnięciu klawisza "R" pojawi się tekst:

### Enter period Time in miliseconds :

Należy wtedy wpisać odpowiednią wartość, w tym przypadku np. 500 i potwierdzić ją klawiszem "Enter".

Liczbowe parametry konfiguracyjne należy wpisywać w formacie takim jak wyświetlone są na ekranie i zakończyć znakiem <CR> (klawisz "Enter").

W czasie konfiguracji należy koniecznie określić parametry sieciowe w tym adresy IP: urządzenia aktualnie konfigurowanego czyli "Local IP address" oraz powiązanego z nim czyli "Peer IP address". Port, poprzez który urządzenia komunikują się z sobą można określić dowolnie. Adres fizyczny interfejsu Ethernet (MAC ADDRESS) jest określony przez producenta i jego zmiana nie jest zalecana.

Menu "(M)ode select" pozwala określić tryb pracy urządzenia: M- master, S- Slave lub T- Test. Jedno z urządzeń w powiązanej parze powinno być Master, drugie Slave. Tryb pracy "Test" wybiera się przypadku współpracy ze specjalnym programem diagnostycznym. W tym trybie urządzenia odsyła kopię otrzymanego pakiety UDP ( o ile był poprawny).

Poziom diagnostyczny oznaczony "Debug level" powinien w normalnych warunkach ustawiony na "0". Inne wartości wykorzystywane mogą być wyłącznie do testowania przy współpracy ze specjalnymi programami diagnostycznymi.

Menu "(D)isplay" spowoduje wyprowadzenie aktualnych wartości parametrów konfiguracyjnych, a menu "(E)xit"

wyjście z trybu konfiguracyjnego i przejście do normalnej pracy.

Zmiany wprowadzone w czasie konfiguracji są natychmiast zapisywane w pamięci trwałej i będą obowiązywały do następnej zmiany.

Po wyjściu z trybu konfiguracji wszystkie sygnały interfejsu RS232 urządzenia przejmują funkcję "transportową" i nie mogą byś wykorzystywane do transmisji danych asynchronicznych.

Transporter ETT dołączony do sieci i pracujący w trybie normalnym odpowiada na standardowe pakiety ICMP, co oznacza że można sprawdzić jego operatywność i dostępność np. za pomocą komendy "Ping".

## 6. Zastosowanie

Na rys. 5 przedstawiono przykładowy schemat wykorzystania transportera ETT do sterowania przekaźnikiem.



Rys. 5. Zastosowanie transportera ETT do sterowania przekaźnikiem